
Statistically Tagging Blog Posts
Jonathan Hohle – 993867167

jonathan.hohle@asu.edu

Abstract
This paper describes the implementation of
Bayesian tagging system, and its application on
personal and commercial blog posts. Multiple
accurate tags can be determined for a post, with
increasing accuracy as the blog corpus gets larger.

Author Keywords
Bayesian Classification, Blogs, Tagging

The Problem
According to Technorati, there are 55 million
blogs, most of which have some kind of
categorization system. This categorization, or
tagging is largely a manual process, typically
executed by the authors of the posts that make up
each blog.

There are two major types of blogs on the internet
today: commercial blogs, which feature bloggers
who are paid to post (or encouraged by their
employers) with many authors, and personal blogs,
generally with one author.

Commercial blog tagging seems to be a mishmash
of very relevant tags combined with tags chosen at
the whim of the author. Sometimes posts get made
with no tags at all. Personal blogs may be more
consistent, but like commercial blogs, generally
have a decent corpus of manually tagged posts.
Couldn't blog tagging be automated?

Many people use text classifiers every day without
even thinking about it. The spam filters included
with most email clients are generally some form of

statistical classifier which is attempting to put
email in a spam category or a ham category. Spam
filtering is very effective, so it seems like a good
starting point for a blog post classifiers. Blog post
classification is more than a two class problem
however, and optimally, multiple classes could be
assigned to a post. How do we get their from a
two class problem?

Previous Work
Paul Graham is responsible for A Plan for Spam[2],
a seminal work on the topic of spam classification.
His paper spawned an entire industry of spam
classification products. His approach is simple,
look at all the tokens in an block of text, and find
determine how many spam emails contain those
tokens compared to how many not spam emails. If
the probability is in favor of the spam emails, the
email never makes it to the inbox. With even very
low thresholds, Paul Graham's techniques are very
effective at keeping junk out of our inboxes.

Ben Kamens saw the usefulness of these Bayesian
classification method, but was interested in sorting
mail for his comany's FogBugz software into more
categories that just spam and ham. Of course he
wanted that functionality as well, but he also
wanted to automatically sort mail based on its
content. While investigating this problem he
discovered a something which helped him increase
his accuracy. Comparing each message in a
category against all the messages not in the
category was not effective. However, comparing a
message to only the messages in two categories at a
time was very effective.

In Beyond Binary Classification [3], Ben Kamens
describes what he calls a Bayesian tournament
algorithm. Two categories are chosen and
evaluated. The category with the highest
probability moves to the next round, where it is
compared to the next category and so on, until all
of the categories have been evaluated. The
category which makes it through to the end is the
most likely category. This method proved to be so
effective, that it was integrated and now ships with
Fog Creek's FogBugz software.

This research gets us to being able to accurately
choose one category, or tag, for a blog post, but
blogs posts generally have several tags? The rest
of this paper will discuss the implementation of a
system which is able to tag blog posts with several
relevant tags.

Data Set and Aggregator
For my corpora I chose to use an individual's blog
and a commercial blog. For the individual blog I
chose to use my own (http://hohle.net), which
consisted of 174 posts, each tagged with a single
category. This data was readily available to me,
and the live database was copied over into a
database specifically for this project.

For a commercial blog, I chose The Unofficial
Apple Weblog (http://tuaw.com/). I chose this blog
because it was familiar, it has multiple authors,
each with their own tagging style, and the corpus of
posts was large (over 9500 tagged posts). To
aggregate the posts and tags from the blog, I wrote
a small spider which scrapped each of their posts,
and dumped their content to my database. After the
initial scraping I would retrieved deltas daily,
however, stopped retrieving posts during the final
week of the project. Each post from the blog was
tagged 0 to 5 times.

Implementation Details
Several implementation choices were made which
may have affected the accuracy of the classifier.
The first major decision was how to “tokenize”
blog posts. I chose to use Paul Graham's approach
and ignore characters which weren't alphanumeric,
dashes, dollar signs, or single quotes. Put simply, I
split the title and content strings using the regular

expression /[^a-zA-Z0-9\-$']/ and combined the
two arrays. Duplicates were removed from the
array as well as any empty strings and strings with
only whitespace.

My first step was to implement Ben Kamens'
algorithm as a base classifier and expand from
there. I was not satisfied with the speed of my
initial implementation and spent several iterations
trying to improve the performance while the
algorithm was still simple. Most of the processing
time was spent at the database going through the
corpus data. While the tables were optimized and
indexed appropriately, looking up the count of
posts with a certain token and tag was very
expensive. I simplified the queries significantly,
but there might still be several hundred token
lookup queries per classification, multiplied 90
times, once for each tag belonging to the
commercial blog. Since the database was the
bottleneck, I had plenty of RAM to spare, and my
corpus was no longer changing, I made the
decision early on to only run queries once if
necessary. I also reduced most of the queries to
only operate on primary and foreign keys, which
were cached as described earlier. This significantly
improved the performance of the classifier. An
initial classification would take nearly a minute, but
subsequent classifications would only take a few
seconds.

The probability of each token was defined as p(w)
and was defined as

p(w)=b1(w)/ b2(w)
where

bn(w)=(# of posts with tag n and token w)/
(# with tag n)

with b1(w) being the tag which is considered the
winner and b2(w) being the tag which is considered
the challenger.

In Paul Graham's paper, he suggests not looking at
every token, but only looking at the most
interesting tokens. The most interesting tokens are
those whose probability is closest to 1.0 (favoring
the winning tag) or closest to 0.0 (favoring the
challenging tag). To simply sort on interestingness,
I wrote a function which would return from 0.0 to
0.5 – 0.0 being not very interesting and 0.5 being
extremely interesting. This function was defined as
iw=|p(w)-0.5|. I chose to use the 25 most interesting
tokens.

To choose multiple relevant tags, I ran the post

http://hohle.net/

through Ben Kamens' algorithm a second time,
excluding the tag that was selected during the first
iteration. I then looked at the probability of the
post being the best tag (the first chosen), or the tag
which as just selected. If that probability was over
a certain threshold, I kept the new tag, and repeated
the process, always comparing the newly selected
tag with the original tag. When the probability fell
below the threshold or 5 tags were retrieved, the
evaluation was stopped. The threshold chosen for
testing was 0.54.

My implementation included a webapp which
mimicked a simple blog authoring interface. As
you type, the editor would attempt to classify your
post and presents the author with tags that are
relevant to the content being produced. Because
the classifier would use 25 words to classify, it
generally took about that many for the classifier to
get in the general ballpark of what the article was
about. Anything above that would provide mostly
accurate tags.

Accuracy
To test my initial implementation of Ben Kamens'
algorithm, I classified posts in 200 post groups. I
soon realized that a programatic indicator of
accuracy would be difficult because the tags given
to posts weren't necessarily meaningful or accurate.
A post might be tagged “analysis / opinion,” but
other posts with that tag are wide ranging. To
convince myself the classifier was working, I
automated the process of classifying groups of
posts and checking to see if the first tag selected
was chosen by the post author. For my own blog,
with limited data and only single tags for posts, the
classifier was able to correctly tag the post 90% of
the time. For The Unofficial Apple Weblog, the
results were much higher with the lowest grouping
above 98% and the highest at 99.5%. This was

enough to convince me that the classifier was
working.

Once I moved to multiple tags any validation was
done by hand. This was much more time
consuming and getting multiple parties to validate
the results was difficult. In all, about 1 and 20
posts included a tag which was not appropriate for
the content.

Conclusion
While automated tagging might not be a solvable
problem, a classifier with a large corpus can
accurately suggest tags to an author. These tags
might have to be manually selected, or massaged,
but they provide a good starting point for consistent
site-wide tagging.

There are many improvements that could be made
to the current implementation. Currently, the
probabilities of the top 25 tokens are average to get
an aggregate probability. Using something like chi
squared might be more accurate. Also, while html
entities are valuable for classifying spam email,
they might not be so valuable for classifying blog
posts. Because they are relatively benign, they
probably don't hurt classification, but taking them
out might reduce the number of uninteresting
tokens evaluated (and if nothing else, speed up
processing).

References
1. http://technorati.com/ (2006)

2. Graham, P., A Plan for Spam.
http://www.paulgraham.com/spam.html.
(2002)

3. Kamens, B., Beyond Binary Classification.
http://www.fogcreek.com/FogBugz/Downlo
ads/KamensPaper.pdf. (2005)

http://www.fogcreek.com/FogBugz/Downloads/KamensPaper.pdf
http://www.fogcreek.com/FogBugz/Downloads/KamensPaper.pdf
http://www.paulgraham.com/spam.html
http://technorati.com/

