
Statistically Tagging Blog Posts
Jonathan Hohle – 993867167

jonathan.hohle@asu.edu

Abstract
This paper describes the implementation of 
Bayesian tagging system, and its application on 
personal and commercial blog posts.  Multiple 
accurate tags can be determined for a post, with 
increasing accuracy as the blog corpus gets larger.
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The Problem
According to Technorati, there are 55 million 
blogs, most of which have some kind of 
categorization system.  This categorization, or 
tagging is largely a manual process, typically 
executed by the authors of the posts that make up 
each blog.

There are two major types of blogs on the internet 
today: commercial blogs, which feature bloggers 
who are paid to post (or encouraged by their 
employers) with many authors, and personal blogs, 
generally with one author.

Commercial blog tagging seems to be a mishmash 
of very relevant tags combined with tags chosen at 
the whim of the author.  Sometimes posts get made 
with no tags at all.  Personal blogs may be more 
consistent, but like commercial blogs, generally 
have a decent corpus of manually tagged posts. 
Couldn't blog tagging be automated?

Many people use text classifiers every day without 
even thinking about it.  The spam filters included 
with most email clients are generally some form of 

statistical classifier which is attempting to put 
email in a spam category or a ham category.  Spam 
filtering is very effective, so it seems like a good 
starting point for a blog post classifiers.  Blog post 
classification is more than a two class problem 
however,  and optimally, multiple classes could be 
assigned to a post.   How do we get their from a 
two class problem?

Previous Work
Paul Graham is responsible for A Plan for Spam[2], 
a seminal work on the topic of spam classification. 
His paper spawned an entire industry of spam 
classification products.  His approach is simple, 
look at all the tokens in an block of text, and find 
determine how many spam emails contain those 
tokens compared to how many not spam emails.  If 
the probability is in favor of the spam emails, the 
email never makes it to the inbox.  With even very 
low thresholds, Paul Graham's techniques are very 
effective at keeping junk out of our inboxes.

Ben Kamens saw the usefulness of these Bayesian 
classification method, but was interested in sorting 
mail for his comany's FogBugz software into more 
categories that just spam and ham.  Of course he 
wanted that functionality as well, but he also 
wanted to automatically sort mail based on its 
content.  While investigating this problem he 
discovered a something which helped him increase 
his accuracy.  Comparing each message in a 
category against all the messages not in the 
category was not effective.  However, comparing a 
message to only the messages in two categories at a 
time was very effective.



In Beyond Binary Classification [3], Ben Kamens 
describes what he calls a Bayesian tournament 
algorithm.  Two categories are chosen and 
evaluated.  The category with the highest 
probability moves to the next round, where it is 
compared to the next category and so on, until all 
of the categories have been evaluated.  The 
category which makes it through to the end is the 
most likely category.  This method proved to be so 
effective, that it was integrated and now ships with 
Fog Creek's FogBugz software.

This research gets us to being able to accurately 
choose one category, or tag, for a blog post, but 
blogs posts generally have several tags?  The rest 
of this paper will discuss the implementation of a 
system which is able to tag blog posts with several 
relevant tags.

Data Set and Aggregator
For my corpora I chose to use an individual's blog 
and a commercial blog.  For the individual blog I 
chose to use my own (http://hohle.net), which 
consisted of 174 posts, each tagged with a single 
category.  This data was readily available to me, 
and the live database was copied over into a 
database specifically for this project.

For a commercial blog, I chose The Unofficial 
Apple Weblog (http://tuaw.com/).  I chose this blog 
because it was familiar,  it has multiple authors, 
each with their own tagging style, and the corpus of 
posts was large (over 9500 tagged posts).  To 
aggregate the posts and tags from the blog, I wrote 
a small spider which scrapped each of their posts, 
and dumped their content to my database.  After the 
initial scraping I would retrieved deltas daily, 
however, stopped retrieving posts during the final 
week of the project.  Each post from the blog was 
tagged 0 to 5 times.

Implementation Details
Several implementation choices were made which 
may have affected the accuracy of the classifier. 
The first major decision was how to “tokenize” 
blog posts.  I chose to use Paul Graham's approach 
and ignore characters which weren't alphanumeric, 
dashes, dollar signs, or single quotes.  Put simply, I 
split the title and content strings using the regular 

expression /[^a-zA-Z0-9\-$']/ and combined the 
two arrays.  Duplicates were removed from the 
array as well as any empty strings and strings with 
only whitespace.

My first step was to implement Ben Kamens' 
algorithm as a base classifier and expand from 
there.  I was not satisfied with the speed of my 
initial implementation and spent several iterations 
trying to improve the performance while the 
algorithm was still simple.  Most of the processing 
time was spent at the database going through the 
corpus data.  While the tables were optimized and 
indexed appropriately, looking up the count of 
posts with a certain token and tag was very 
expensive.  I simplified the queries significantly, 
but there might still be several hundred token 
lookup queries per classification, multiplied 90 
times, once for each tag belonging to the 
commercial blog.  Since the database was the 
bottleneck, I had plenty of RAM to spare, and my 
corpus was no longer changing,  I made the 
decision early on to only run queries once if 
necessary.  I also reduced most of the queries to 
only operate on primary and foreign keys, which 
were cached as described earlier.  This significantly 
improved the performance of the classifier.  An 
initial classification would take nearly a minute, but 
subsequent classifications would only take a few 
seconds.

The probability of each token was defined as p(w) 
and was defined as

p(w)=b1(w)/ b2(w)
where

bn(w)=(# of posts with tag n and token w)/
(# with tag n)

with b1(w) being the tag which is considered the 
winner and b2(w) being the tag which is considered 
the challenger.

In Paul Graham's paper, he suggests not looking at 
every token, but only looking at the most 
interesting tokens.  The most interesting tokens are 
those whose probability is closest to 1.0 (favoring 
the winning tag) or closest to 0.0 (favoring the 
challenging tag).  To simply sort on interestingness, 
I wrote a function which would return from 0.0 to 
0.5 – 0.0 being not very interesting and 0.5 being 
extremely interesting.  This function was defined as 
iw=|p(w)-0.5|. I chose to use the 25 most interesting 
tokens.

To choose multiple relevant tags, I ran the post 

http://hohle.net/


through Ben Kamens' algorithm a second time, 
excluding the tag that was selected during the first 
iteration.  I then looked at the probability of the 
post being the best tag (the first chosen), or the tag 
which as just selected.  If that probability was over 
a certain threshold, I kept the new tag, and repeated 
the process, always comparing the newly selected 
tag with the original tag.  When the probability fell 
below the threshold or 5 tags were retrieved, the 
evaluation was stopped.  The threshold chosen for 
testing was 0.54.

My implementation included a webapp which 
mimicked a simple blog authoring interface.  As 
you type, the editor would attempt to classify your 
post and presents the author with tags that are 
relevant to the content being produced.  Because 
the classifier would use 25 words to classify, it 
generally took about that many for the classifier to 
get in the general ballpark of what the article was 
about.  Anything above that would provide mostly 
accurate tags.

Accuracy
To test my initial implementation of Ben Kamens' 
algorithm, I classified posts in 200 post groups.  I 
soon realized that a programatic indicator of 
accuracy would be difficult because the tags given 
to posts weren't necessarily meaningful or accurate. 
A post might be tagged “analysis / opinion,” but 
other posts with that tag are wide ranging.  To 
convince myself the classifier was working, I 
automated the process of classifying groups of 
posts and checking to see if the first tag selected 
was chosen by the post author.  For my own blog, 
with limited data and only single tags for posts, the 
classifier was able to correctly tag the post 90% of 
the time.  For The Unofficial Apple Weblog, the 
results were much higher with the lowest grouping 
above 98% and the highest at 99.5%.  This was 

enough to convince me that the classifier was 
working.

Once I moved to multiple tags any validation was 
done by hand.  This was much more time 
consuming and getting multiple parties to validate 
the results was difficult.  In all, about 1 and 20 
posts included a tag which was not appropriate for 
the content.

Conclusion
While automated tagging might not be a solvable 
problem, a classifier with a large corpus can 
accurately suggest tags to an author.  These tags 
might have to be manually selected, or massaged, 
but they provide a good starting point for consistent 
site-wide tagging.

There are many improvements that could be made 
to the current implementation.  Currently, the 
probabilities of the top 25 tokens are average to get 
an aggregate probability.  Using something like chi 
squared might be more accurate.  Also, while html 
entities are valuable for classifying spam email, 
they might not be so valuable for classifying blog 
posts.  Because they are relatively benign, they 
probably don't hurt classification, but taking them 
out might reduce the number of  uninteresting 
tokens evaluated (and if nothing else, speed up 
processing).
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